

The Synergy of Water and Fire

'Advanced Micro Machining Applications from Watch Gears to Turbine Blades'

Author: Nitin Shankar

Date: 25th January, 2017

Company Profile

Research - Oriented Manufacturing Operation

- Established: 1997
- Product Focus: Laser MicroJet applications
- Location: Duillier, Switzerland
- Number of employees: 75
- Capacity: 100 machines per year
- 4 subsidiaries with demo centres in the USA, Japan, Korea and India

Laser MicroJet Principle

Laser MicroJet Technology

- Using the differences in the refractive indices between air and water, the technology creates a laser beam that is completely reflected at the air-water interface
- The laser is entirely contained within the water jet as a parallel beam similar in principale to an optical fiber

Technology Benefits

Application: Watchmaking

Synova's advanced Laser MicroJet (LMJ) systems with 3 or 5 axes are ideally suited for cutting watch movement components and decorative parts with high precision and quality as needed for the watch industry.

- Excellent cutting quality with smooth surfaces and sharp edges
- Parallel kerf walls due to cylindrical laser beam
- Narrow kerf widths of 25 μm to 60 μm, depending on nozzle size
- Thickness from 0.05 mm to 4 mm (up to 10 mm)
- Low roughness (R_a) of the cutting wall from 0.15 μm to 0.7 μm, depending on the laser source
- No or very limited heat affected zone (HAZ), no burrs due to water cooling and cleaning capabilities
- Very flexible, new designs quickly prepared under CAD control

Application: Watchmaking Examples

Application: Tooling Manufacturing

Synova offers fast and accurate laser machining solutions for the tool manufacturing industry.

- Materials: PCD, SCD, natural diamond, PcBN, carbide
- Maximum thickness: 20 mm (PCD/ WC drill bits)
- Average thickness:
 - 1.6 mm for PCD/ WC inserts
 - up to 2 mm for SCD
 - up to 4.7 mm for PcBN
- Operations: Roughing, finishing, clearance shaping (with evolving clearance angle, if needed)
- High speed 2D & 3D cuttings
- Low roughness on PCD: (R_a < 0.3 micron)

Application: Tool Manufacturing Examples

PCD tool inserts

MCD tool insert

PCD Drilling tool inserts

Surface and edge quality by LMJ

Application: Semiconductors

Synova's unique water jet guided laser systems offer many advantages for applications in the semiconductor industry compared to conventional diamond blade saws or laser systems.

- High precision with a tolerance of +/-3 μm
- Cutting of any shapes (2D) possible
- High cutting speed: up to 200 mm/s
- Wafer thickness from 50 µm to 2 mm
- Maximum axis velocity 1000 mm/s

Application: Semiconductor Examples

Grooving on Sapphire

Thin Low-k wafer

Solar Cells

Wafer edge after removal

Synova's advanced Laser MicroJet (LMJ) systems with 3 or 5 axes are perfectly suited for machining high-precision parts in the energy and aviation industry.

Typical Shaped Holes

- IGT Turbine Parts: Large 10x10x10
- Aerospace Turbine Vanes: Small 10x10x10
- Aerospace Turbine Blades: S44

Compared Processes:

- Laser MicroJet
- 50 W Fiber Laser
- 100 W Fiber Laser
- Each of the three shapes was produced using two different methods, «Production» (balance between quality and speed) and «Quality» (ideal shape with best quality)
- Material: Inconel 718 plates, 2 mm thick

Speed Results

Pictures – Small Holes

Pictures of Cross Section – Small Holes

Pictures of Recast – Small Holes

MCS Series - Metal Cutting System

- Synova Laser MicroJet
- Makino-based platform
- 3-axis MCS 300
- 5-axis MCS 500
- Hole-drilling in superalloys (8mm thick, 0.76 dia. in 70 seconds)
- 30µm kerf width
- Precision: ± 1.5µm
- High aspect ratio in hole-drilling (up to 1:20)

Materials

- Metals: Super-alloys, stainless steel, aluminium, copper, nickel, titanium
- Hard Materials: Ceramics,
 PcBN, PCD, MCD, CVD
 diamonds, tungsten carbide
- Ceramic-matrix composites (CMCs): Carbon, alumina, silicon carbide

Operations

- MCS 300: Cutting, grooving, drilling, shaping in 3 axes, trenching, milling, dicing, engraving, profiling
- MCS 500: Cutting, grooving, shaping in 3 and 5 axes, trenching, milling, dicing, engraving profiling

General Specifications

		MCS 300	MCS 500
Working volume	mm (W x D x H)	400 x 300 x 200	500 x 400 x 500
B-axis		360°	- 100°to 50°
C-axis			360°
Max. stroke	mm (X, Y, Z)	480 x 310 x 210	760 x 400 x 500
Accuracy	μm	± 1	± 1.5
Repeatability	μm	± 1	± 1
Max XY speed	m/min	60	60

Machine Technologies

- Unique water jet guided Laser MicroJet by Synova
- High Performance EDM hole-drilling by Makino
- Work piece position data is transferred between machines

The whole is truly greater than the sum of its parts!

Turbine Engine Market Demands

- Increased number of holes in airfoils with more complex geometries
- Increased use of thermal barrier coatings
- Desire to pre-coat and drill components
- Higher performance requirements drive needs for higher hole-drilling quality

Process Capability & Flow

- Single process for parts with Thermal Barrier Coatings (TBC)
- Handles Non-Line-Of Sight holes (NLOS)
- Balanced cell outputs

Laser MicroJet Technology

- No recast or damage on exit hole
- Typical Depth-to-Diameter of 10:1 to 20:1
- Angle cutting possibilities down to 25°
- Typical speed: 60s/hole is average
- Smallest holes of 0.4 mm dia. on 3 mm material thickness

EDM Drilling Technology

- Fully submerged operation
- Fast & Reliable Break-Thru detection
- Integrated Tool holders-> Fast ATC
- Vibration Control Finger System
- Optimized for Hole Drilling & Diffuser Shapes

EDM Drilling Technology

- Ability to process NLOS features
- Integrated 3D Probing Setup capability
- Generator achieves high speed with required metallurgical quality
- Rise/Fall Work Tank (Ergonomics & Automation)

HybridCell Process Summary

- Leverages productive advantages of Laser & EDM Machining
- Processes fully thermal coated turbine engine components
- Eliminates process steps typically associated with TBC coating
- Achieves greater process quality control with potential cost savings

Questions?

Thank You!

