Cutting Diamond Tools By Laser MicroJet ${ }^{\circ}$

New developments in the wet laser machining of industrial diamond tools

Sébastien KURZEN
Application Engineer
Synova S.A.

Innovative Laser Systems

Speaker introduction

- Sébastien Kurzen
- Synova S.A. - Switzerland
- Application Engineer
- Diamond tools
- Simultaneous 5-axis machining for diamond tools and CAD/CAM software

Presentation Contents

1. Company
2. Laser MicroJet ${ }^{\circledR}$ technology
3. LCS 50-5
4. State of the art results cutting PCD/WC
5. State of the art results cutting SCD
6. Conclusions

1. Company

- Laser cutting machines (using the Laser-MicroJet principle)
- HQ in Duillier, near Geneva, Switzerland
- Founded in 1997
- 75 employees
- Micro-Machining Centers (MMC's) in the USA, India, Korea, Japan

2. Laser MicroJet ${ }^{\circledR}$ (LMJ) technology

2. Laser MicroJet ${ }^{\circledR}$ (LMJ) technology

- Laser beam focused into nozzle aperture

2. Laser MicroJet ${ }^{\circledR}$ (LMJ) technology

- Laser beam focused into nozzle aperture
- Laser light guided within water jet by total internal reflection
 internal reflection

2. Laser MicroJet ${ }^{\circledR}$ (LMJ) technology

- Laser beam focused into nozzle aperture
- Laser light guided within water jet by total internal reflection
- Laser pulses evaporate material, water cools and cleans between the pulses
- By scanning, a trench is formed which becomes deeper with each pass

2. Laser MicroJet ${ }^{\circledR}$ (LMJ) technology
https://youtu.be/Q IRaONosxc?t=54s

INTERTECH/ZEOTV

2. Laser MicroJet ${ }^{\circledR}$ (LMJ) technology

Advantages are:

- No focus adjustment
- Parallel sided kerf
- Minimal heat affected zone
- High material removal rate

Optical Head

Work Piece
Chuck

NTERTECH

3. LCS 50-5

Mainly used to cut:

- Polycrystalline diamond (on WC) \& PcBN
- Single crystal diamond (HPHT or CVD)
- Natural diamond
- Ceramics
- Metals

3. LCS 50-5

Mainly used to cut:

- Polycrystalline diamond (on WC) \& PcBN
- Single crystal diamond (HPHT or CVD)
- Natural diamond
- Ceramics
- Metals

INTERTECH Z®OTV

3. LCS 50-5

4. State of the art results cutting PCD/WC

- All kinds of tools / geometries can be cut

4. State of the art results cutting PCD/WC

PCD/WC cutting

Uniform cut surface profile

Parallel cutting

INTEATECH Zeol

4. State of the art results cutting PCD/WC

500 um

4. State of the art results cutting PCD/WC

Edge waviness ≤ 1 micron

4. State of the art results cutting PCD/WC

INTEATECH Zeol

4. State of the art results cutting PCD/WC

4. State of the art results cutting PCD/WC

	Programmed	Measured
Primary clearance angle	8.0°	8.2°
Primary clearance depth	$500 \mu \mathrm{~m}$	$510 \mu \mathrm{~m}$
Secondry clearance angle	20.0°	20.1°
Cutting edge radius	-	$\mathrm{Ra}=0.21 \mu \mathrm{~m}, \mathrm{Rz}=1.5 \mu \mathrm{~m}$
Roughness below cutting edge	-	$1.5 \mathrm{~mm} / \mathrm{min}$
Effective cutting speed	-	

5. State of the art results cutting SCD

- All kinds of tools / geometries can be cut

5. State of the art results cutting SCD

NTERTECH

5. State of the art results cutting SCD

Edge waviness ≤ 0.5 micron

NTERTECH $/ 2017$

5. State of the art results cutting SCD

Edge waviness ≤ 0.5 micron

NTERTECH

5. State of the art results cutting SCD

Edge waviness ≤ 0.5 micron

NTERTECH $/$ 2OT17

5. State of the art results cutting SCD

Edge waviness ≤ 0.5 micron

5. State of the art results cutting SCD

Cutting trenches are visible but no impact on roughness
20x

500 um

INTERTECH ZEOTV

5. State of the art results cutting SCD

5. State of the art results cutting SCD

5. State of the art results cutting SCD

5. State of the art results cutting SCD

5. State of the art results cutting SCD

	Programmed	Measured
Clearance angle	10.0°	9.9°
Cutting edge radius	-	$2.7 \mu \mathrm{~m}$
Roughness below cutting edge	-	$\mathrm{Ra}=0.25 \mu \mathrm{~m}, \mathrm{Rz}=1.4 \mu \mathrm{~m}$
Effective cutting speed	-	$2.6 \mathrm{~mm} / \mathrm{min}$

6. Conclusion $1 / 3$ - The results

- Sub-micron surface finish can be reached for both PCD and SCD materials
- Such result is possible even at cutting speeds up to $1.5 \mathrm{~mm} / \mathrm{min}$ for PCD and $2.6 \mathrm{~mm} / \mathrm{min}$ for SCD
- HAZ depth is $5 \mu \mathrm{~m}$, according to Sumitomo
- Edge micro-cracking compared to dry lasers reduced or eliminated

6. Conclusion 2/3 - the machine

- Very compact machine ($800 \times 1200 \times 1650 \mathrm{~mm}$)
- Full 5-axis capability
- Very easy to operate (HMI)
- Intuitive CAM software for diamond tools including auto-probe-correction and batch processing
- Automatic probe-based correction by CAD/CAM for more complex tools ("SynovaCut")

6. Conclusion $3 / 3$ - the machine

- Cutting strategies can be implemented in a production mode
- Unlimited choice of materials and thicknesses
- Low cost of ownership
- Faster cutting/shaping means fewer machines required \rightarrow reduced capital investment

Thank you for your attention!

Sébastien Kurzen
Application Engineer Synova S.A.
skurzen@synova.ch

6. Appendix - SynovaCut demo

$\mathbb{N T E R T E C H} /$ 2OT7

