

Cutting Diamond Tools By Laser MicroJet®

New developments in the wet laser machining of industrial diamond tools

Sébastien KURZEN Application Engineer Synova S.A.

Speaker introduction

- Sébastien Kurzen
- Synova S.A. Switzerland
- Application Engineer
- Diamond tools
- Simultaneous 5-axis machining for diamond tools and CAD/CAM software

Presentation Contents

- 1. Company
- 2. Laser MicroJet® technology
- 3. LCS 50-5
- 4. State of the art results cutting PCD/WC
- 5. State of the art results cutting SCD
- 6. Conclusions

1. Company

- Laser cutting machines (using the Laser-MicroJet principle)
- HQ in Duillier, near Geneva, Switzerland
- Founded in 1997
- 75 employees
- Micro-Machining Centers (MMC's) in the USA, India,
 Korea, Japan

Laser beam focused into nozzle aperture

- Laser beam focused into nozzle aperture
- Laser light guided within water jet by total internal reflection

- Laser beam focused into nozzle aperture
- Laser light guided within water jet by total internal reflection
- Laser pulses evaporate material, water cools and cleans between the pulses
- By scanning, a trench is formed which becomes deeper with each pass

https://youtu.be/Q_IRaONosxc?t=54s

Advantages are:

- No focus adjustment
- Parallel sided kerf
- Minimal heat affected zone
- High material removal rate
- Debris washed from kerf

Vision Camera

Touch Probe

Optical Head

Work Piece Chuck

Optical Head

Work Piece Chuck

Unit and Nozzle

Jet Angle Correction

Nozzle Alignment Camera

Helium Connection

3. LCS 50-5

Mainly used to cut:

- Polycrystalline diamond (on WC) & PcBN
- Single crystal diamond (HPHT or CVD)
- Natural diamond
- Ceramics
- Metals

3. LCS 50-5

Mainly used to cut:

- Polycrystalline diamond (on WC) & PcBN
- Single crystal diamond (HPHT or CVD)
- Natural diamond
- Ceramics
- Metals

3. LCS 50-5

All kinds of tools / geometries can be cut

PCD/WC cutting

Uniform cut surface profile

Parallel cutting

20x

Edge waviness ≤ 1 micron

0.5 µm PCD grains

5000x

	Programmed	Measured
Primary clearance angle	8.0°	8.2°
Primary clearance depth	500 μm	510 μm
Secondry clearance angle	20.0°	20.1°
Cutting edge radius	-	< 2 μm
Roughness below cutting edge	-	Ra = 0.21 μm, Rz = 1.5 μm
Effective cutting speed	-	1.5 mm/min

All kinds of tools / geometries can be cut

Edge waviness ≤ 0.5 micron

500x

Edge waviness ≤ 0.5 micron

Edge waviness ≤ 0.5 micron

1000x

Cutting trenches are visible but no impact on roughness

20x

	Programmed	Measured
Clearance angle	10.0°	9.9°
Cutting edge radius	-	2.7 μm
Roughness below cutting edge	-	Ra = 0.25 μm, Rz = 1.4 μm
Effective cutting speed	-	2.6 mm/min

6. Conclusion 1/3 – The results

- Sub-micron surface finish can be reached for both PCD and SCD materials
- Such result is possible even at cutting speeds up to
 1.5 mm/min for PCD and 2.6 mm/min for SCD
- HAZ depth is 5 μm, according to Sumitomo
- Edge micro-cracking compared to dry lasers reduced or eliminated

6. Conclusion 2/3 – the machine

- Very compact machine (800 x 1200 x 1650 mm)
- Full 5-axis capability
- Very easy to operate (HMI)
- Intuitive CAM software for diamond tools including auto-probe-correction and batch processing
- Automatic probe-based correction by CAD/CAM for more complex tools ("SynovaCut")

6. Conclusion 3/3 – the machine

- Cutting strategies can be implemented in a production mode
- Unlimited choice of materials and thicknesses
- Low cost of ownership
- Faster cutting/shaping means fewer machines required → reduced capital investment

Thank you for your attention!

Sébastien Kurzen Application Engineer Synova S.A.

skurzen@synova.ch

6. Appendix – SynovaCut demo

