Synova S.A., headquartered in Duillier, Switzerland, manufactures leading-edge laser cutting systems since 1997 that incorporate the proprietary water jet guided laser technology (Laser MicroJet®) in a true industrial CNC platform. Customers benefit from significant yield and quality improvements in cutting, as well as enhanced capabilities for micro-machining a wide range of materials. Synova is a privately owned company with subsidiaries in North America and the Asia/Pacific region.
The Laser MicroJet® Technology

A SIMPLE PRINCIPLE

The Laser MicroJet (LMJ) is a hybrid method of machining, which combines a laser with a “hair-thin” water jet that precisely guides the laser beam by means of total internal reflection in a manner similar to conventional optical fibers. The water jet continually cools the cutting zone and efficiently removes debris. As a “cold, clean and controlled laser”, Synova's LMJ technology resolves the significant problems associated with dry lasers such as thermal damage, contamination, deformation, debris deposition, oxidation, micro-cracks, lack of accuracy and taper.

Technical Parameters

Lasers
- Diode-pumped solid-state pulsed Nd:YAG lasers with pulse durations in the micro- or nano-second range, operating at 1064, 532 or 355 nm
- Average laser power ranges from 20 to 400 W

Water
- Pure deionised and filtered water
- Water consumption is low due to “hair-thin” jet: approx. 10 litre/hour at 50-800 bar pressure
- Resulting forces exerted are negligible (<0.1 N)

Nozzles
- Nozzles made of sapphire or diamond, as these materials’ hardness enables the generation of a long, stable water jet over a long period of time without requiring replacement
- Diameter range: 25-100 µm
The Fusion of Water and Light

The water jet guided laser is a revolutionary cutting technology, which combines the low-temperature and large working distance advantages of water jet cutting with the precision and speed of conventional dry laser cutting.

As a result, the Laser MicroJet has a remarkably wide range of applications and has established itself amongst other well-known cutting methods including dry lasers, diamond saws, EDM, stamping, water jet cutting and etching.

The LMJ technology is particularly valuable for very thin kerf cutting, delicate surface coatings and high-precision processing of thin work pieces sensitive to deformation and heat as needed in the semiconductor industry, for instance.

Finally, the cylindrically guided laser is ideal for the parallel cutting of super hard materials and rough diamonds with minimal material loss.

The Perfect Shape

The conventional focused laser beam has a limited working distance of just a few millimetres to even fractions of a millimetre due to beam divergence. This not only makes precise focussing and distance control necessary, it also limits the ratio of kerf width to depth.

The Laser MicroJet technology employs a laser beam that is completely reflected at the air-water interface. The beam can be guided over a distance of up to 10 cm, enabling parallel high aspect ratio kerfs. No focussing or distance control is required.
Technology Benefits

Conventional Laser vs. Laser MicroJet

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Conventional Laser</th>
<th>Laser MicroJet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requires precise focus adjustment</td>
<td>Requires precise focus adjustment</td>
<td>No focus adjustment required, non-flat surfaces are not an issue, 3D cutting possible, variable cutting depth of up to several cm</td>
</tr>
<tr>
<td>Conical laser beam leaves non-parallel kerf walls</td>
<td>Conical laser beam leaves non-parallel kerf walls</td>
<td>Cylindrical beam results in parallel kerf walls, consistent high quality cutting</td>
</tr>
<tr>
<td>Limitations in cutting aspect ratio</td>
<td>Limitations in cutting aspect ratio</td>
<td>High aspect ratio, very small kerf width (>20 µm), minimal material loss, with simultaneous deep cuts possible</td>
</tr>
<tr>
<td>Heat affected zone</td>
<td>Heat affected zone</td>
<td>Water-cooling process avoids thermal damage and material change, high fracture strength is maintained</td>
</tr>
<tr>
<td>Particle deposition</td>
<td>Particle deposition</td>
<td>A thin water film eliminates particle deposition and contamination, no surface protection layer required</td>
</tr>
<tr>
<td>Inefficient material removal leaves burrs</td>
<td>Inefficient material removal leaves burrs</td>
<td>High kinetic energy of the water jet expels molten material, no burrs form</td>
</tr>
<tr>
<td>EDM</td>
<td>EDM</td>
<td>EDM</td>
</tr>
<tr>
<td>Only electrically conductive materials</td>
<td>Only electrically conductive materials</td>
<td>Wide range of materials</td>
</tr>
<tr>
<td>Slow ablation process and time-consuming preparation</td>
<td>Slow ablation process and time-consuming preparation</td>
<td>Fast machining</td>
</tr>
<tr>
<td>Expensive consumables (EDM wire)</td>
<td>Expensive consumables (EDM wire)</td>
<td>Low running costs (no tool wear, low water consumption and waste rates)</td>
</tr>
</tbody>
</table>

Applications

- **Energy & Aerospace**: Turbine blades. Drilling of 8 mm superalloys: 70 s/hole
- **Tool Manufacturing**: Tool inserts. Cutting of 1.6 mm PCD/WC: 5 mm/min
- **Micro-Machining**: Connector blades. Cutting of CuBe: 0.5 to 2 mm/s
- **Diamonds**: Rough diamonds Cutting of 5 mm rough diamond in 5 min
Applications and Performance Capabilities

THE STRENGTHS OF THE LASER MICROJET

Materials

The water jet guided method allows the machining of a broad range of materials. Since it’s a very gentle process, the LMJ is particularly well-suited for machining brittle materials that are easily damaged using traditional cutting processes:

- Diamonds: Rough and synthetic diamonds (CVD, HPHT)
- Metals: Stainless steel, aluminium, Durnico, CuBe, copper, brass, shape-memory alloys (nitinol), titanium, nickel, superalloys
- Hard materials: Polycrystalline CBN (PcBN), polycrystalline diamonds (PCD), monocrystalline diamonds (MCD)
- Ceramics: Zirconia (ZrO2), low-temperature co-fired ceramic (LTCC), aluminium nitride (AlN), aluminium oxide (Al2O3)
- Semiconductors: Silicon (Si), gallium arsenide (GaAs), silicon carbide (SiC)
- Ceramic-matrix composites (CMCs)

Thickness

The LMJ can cut a wide range of material thicknesses, e.g. cutting of up to 20 mm thick silicon or drilling of up to 15 mm thick superalloys (hole diameter 800 µm).

Speed

The usage of industrial high-power lasers enables high cutting speeds, especially with thin materials: up to 300 mm/s in 50 µm thick silicon, up to 30'000 round holes/hour in 50 µm thick stainless steel (diameter 80 µm).

Accuracy

The lasers used in Synova’s machines are ultra-precise tools which can achieve very small parallel kerfs – from 25 to 100 µm – with an absolute precision as low as +/- 1.5 µm, resulting in appreciable material savings.

Shapes

LMJ machines allow omni-directional ablation processes, making the creation of any shape possible. This provides customers with the flexibility to develop new ideas and applications, from making small wheels for the watchmaking sector to dicing chips of any shapes in the semiconductor industry.

Costs

The efficient and precise LMJ technology enables low running costs: no tool wear, very few consumables and low waste rates.

Synthetic Diamond: CVD diamonds. Slicing of 7 mm CVD diamond in 5-6 min
Watchmaking: Escape wheels. Cutting of CuBe: 0.5 to 2 mm/s
Medical: Medical implants Cutting of titanium: 0.5 mm/s
Semiconductors: Diode chips. Dicing of 50 µm silicon: 300 mm/s

Quality

Thanks to the water jet cooling capability there is virtually no heat impact. The ablated material is removed with the water flow leaving clean surfaces and less scrap.
The Fusion of Water and Light